نوع مقاله : مروری

نویسنده

دانشجوی دکتری فلسفۀ علم پژوهشگاه علوم انسانی و مطالعات فرهنگی

10.30465/ps.2024.47559.1705

چکیده

کاربرد گسترده‌ی ریاضیات در علوم، این چالش را مطرح می‌کند که چرا و چگونه ریاضیات تا بدین حد در علوم طبیعی موثر و کاربردپذیر است. توضیح این مسئله به ویژه پس از مقاله معروف ویگنر تحت عنوانِ «اثربخشی نامعقولِ ریاضیات»، بسیاری از دانشمندان و فلاسفۀ علم را مجذوب خود کرده است. در این مقاله رویکردهای مختلفِ اخیر به این مسئله را بررسی می‌نماییم. به علاوه، نشان می‌دهیم که چگونه پیش‌فرض‌هایِ متافیزیکی و تلقی‌های متفاوت از ریاضیات و فیزیک در صورت‌بندی این مسئله و پاسخهایی که به آن داده‌ شده دخالت داشته است. این بررسی می‌تواند تا حدی به فهم عمیق‌ترِ مسئله کمک کند.

کلیدواژه‌ها

عنوان مقاله [English]

The Problem of Applicability of Mathematics in Natural Sciences

نویسنده [English]

  • Ali seyedi

Phd student of Philosophy of Science, Research Institute of Human Sciences and Cultural Studies,

چکیده [English]

The wide application of mathematics in science raises the challenge of why and how mathematics is so effective and applicable in natural sciences. The explanation of this problem, especially after Wigner's famous article entitled "Unreasonable Effectiveness of Mathematics", has fascinated many scientists and philosophers of science. In this article, we examine different recent approaches to this issue. In addition, we show how metaphysical assumptions and different understandings of mathematics and physics have been involved in the formulation of this problem and the answers given to it. This review can help to a deeper understanding of the problem.

کلیدواژه‌ها [English]

  • effectiveness of mathematics in science
  • applicability of mathematics
  • relationship between physics and mathematics
  • Eugene Wigner
زارع­پور, م. ص.(1396). فلسفۀ ریاضی ویتگنشتاین. دانشگاه شریف.
سیاوشی, ا. (1389). فلسفۀ ریاضی لاکاتوش. فرهنگ و اندیشۀ ریاضی(45), 51-60.
طالب زاده, س. ح. (تابستان 1384). تحلیل فلسفی از نسبت ریاضیات و علم جدید. فصلنامۀ فلسفۀ دانشگاه تهران(10), 51-76.
گنون, ر. (1365). سیطرۀ کمیت و علائم آخرالزمان (ترجمۀ ع. کاردان). مرکز نشر دانشگاهی.
منیری, م. (1397). ساختارگرایی در فلسفۀ ریاضی معاصر. فرهنگ و اندیشۀ ریاضی, 37(63), 37-50
 
Baker, A. (2011). Explaining the applicability of mathematics in science. Interdisciplinary Science Reviews, 36(3), 255-267.
Balaguer, M. (2001). Platonism and anti-platonism in mathematics. Oxford University Press, USA.
Bangu, S. (2012). The Applicability of Mathematics in Science: Indispensability and Ontology. Basingstoke: Palgrave Macmillan.
Bonheure, D., Gazzola, F., Maz'ya, V., & Hinshelwood, C. N. S. (2019). About mathematics and reality, Albert Einstein (1921 Nobel Prize in Physics), in his Geometry and Experience talk at the Prussian Academy of Sciences in Berlin.
Colyvan, M. (2001). The Indispensability of Mathematics. Oxford university press
Culler, J. (1998). Structuralism.
Frege, G. (1988). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl (Vol. 366). Felix Meiner Verlag.
Giere, R. N. (2004). How Models Are Used to Represent Reality. Philosophy of Science, 71(5), 742-752.
Gonzalez, W. J. (2014). On representation and models in Bas van Fraassen’s approach. Bas van Fraassen’s approach to representation and models in science, 3-37.
Harvey, A. (2011). The reasonable effectiveness of mathematics in the natural sciences. Springer Science+Business Media, 43, 3657-3664.
Heidegger, M. (1977). The age of the world picture. In Science and the Quest for Reality (pp. 70-88). Springer.
Islami, A. (2016). A match not made in heaven: on the applicability of mathematics in physics. Springer.
Ladyman, J. (2014). Structural Realism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
Lakatos, I. (1963). Proofs and refutations. Nelson London
Liston, m. (2000). Mark Steiner. The applicability of mathematics as a philosophical problem. Philosophia Mathematica.
Lützen, J. (2011). The Physical Origin of Physically Useful Mathematics. Interdisciplinary Science Reviews, 36(3), 229-243.
Maudlin, T. (2016). How Mathematics Meets the World. Springer, 91-102
Omnès, R. (2011). Wigner’s “Unreasonable Effectiveness of Mathematics”, Revisited. Foundations of Physics, 1729-1739.
Palmgren, E., & Rasa, T. (2022). Modelling Roles of Mathematics in Physics. Science & Education.
Popper, K. R. (2002a). TRUTH, RATIONALITY, AND THE GROWTH OF SCIENTIFIC KNOWLEDGE. In Conjectures and Refutations (pp. 301-291). Routledge
Popper, K. R. (2002b). Why are the Calculi of Logic and Arithmetic Applicable to Reality? In Conjectures and Refutations. Routledge.
Reck, E., & Schiemer, G. (2019). Structuralism in the Philosophy of Mathematics
Rizza, D. (2013). The applicability of mathematics: Beyond mapping accounts. Philosophy of Science, 80(3), 398-412.
Simons, p. (2001). MARK STEINER The Applicability of Mathematics as a Philosophical Problem. The British Journal for the Philosophy of Science, 181-184.
Steiner, M. (1995). The applicabilities of mathematics. Philosophia Mathematica, 3(2), 129-156.
Steiner, M. (1998). The Applicability of Mathematics As a Philosophical Problem. Harvard University Press.
Van Fraassen, B. C. (1989). Laws and symmetry. Clarendon Press
Wigner, E. p. (1960). The unreasonable effectiveness of mathematics in the natural sciencesCommunications on Pure and Applied Mathematics, 13(1), 1-14.
Worrall, J. (1989). Structural realism: The best of both worlds? dialectica, 43(1‐2), 99-124
Ye, F. (2010). The Applicability of Mathematics as a Scientific and a Logical Problem. Philosophia Mathematica, 18, 144-165.