نوع مقاله : پژوهشی

نویسنده

دکتری فلسفه فیزیک از دانشگاه باقرالعلوم علیه السلام، قم، ایران.

چکیده

نیوتن اثرات دینامیکی مشاهده شده برای اجسام شتاب‌دار (مانند فرورفتگی سطح آب در آزمایش سطل نیوتن و غیره) را ناشی از شتاب آن‌ها نسبت به فضای مطلق می‌دانست. اینشتین با دنبال کردن ایده‌های ماخ به خوبی می‌دانست که اگر بتواند بر اساس این فکر که «حرکت» امری کاملاً نسبی است، نشان دهد که اثرات لختی، در واقع، ناشی از شتاب جسم نسبت به ماده دوردست در عالم است، نه نسبت به فضای مطلق، آنگاه توانسته است مفاهیم مطلقِ نیوتنی را به کلی کنار بگذارد. اعتقاد رایجی وجود دارد مبنی بر این که نظریه نسبیت عام، دستگاه‌های مختصات ارجح (چارچوب‌های لخت) مربوط به فضا و زمان مطلق نیوتنی را کنار گذاشته است. در این نوشتار با بررسی سیر اندیشة اینشتین در تدوین نظریه نسبیت عام، صحت این ادعا تایید می‌شود که علی‌رغم تلاش اینشتین و برخلاف نام این نظریه، اصل ماخ به معنای «نسبی بودن حرکت» یا به این معنا: «منشأ اعمال نیروهای لختی، ماده موجود در عالم است، نه فضازمان مطلق»، نه در اصول‌موضوعه نظریه نسبیت عام گنجانده شده و نه از آن نتیجه می‌شود. بنابراین چنین می‌توان گفت که عناصر مطلق مانند «حرکت و سکونِ مطلق»، «شتاب مطلق»، «نیروی لختی مطلق» و «فضازمانِ مطلق» کماکان در نظریه نسبیت عام حضور دارد. با توجه به اهمیت معرفت‌شناختی اصل ماخ، تلاش برای ارائه یک نظریه فیزیکی کارآمد منطبق با این اصل همچنان ادامه دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Einstein and Mach’s principle

نویسنده [English]

  • Seyed Saied Mirahmadi

PhD holder of philosophy of physics, Baqir al-Olum University, Qom, Iran (I. R.).

چکیده [English]

Newton considered the dynamical effects exerted upon accelerating bodies (such as the concavity of the surface of the water in Newton’s bucket experiment, etc.) to be caused by their acceleration relative to absolute space. Following Mach’s ideas, Einstein, based on the thought that all motion is relative, knew very well that if he could show that the inertial effects are actually due to the acceleration relative to distant matter instead of absolute space, then he would be able to dispose of the Newtonian concepts of absolute space and motion. There is a widespread belief that the general theory of relativity get rid of the preferred (inertial) frames corresponding to Newtonian absolute space and time. In this article, by examining Einstein’s thought process in creating the general theory of relativity, the claim: despite Einstein’s efforts and contrary to the name of the theory, Mach’s principle in the sense of “relativity of all motion” or “inertial forces are exerted by matter, not by absolute spacetime” is neither included in the principles of the general theory of relativity nor results from it, is confirmed. Therefore, the absolute elements such as “absolute rest and motion”, “absolute acceleration”, “absolute inertial forces” and “absolute spacetime” are yet essentially retained in the general theory of relativity. Due to the epistemological importance of Mach’s principle, the effort to provide an efficient physical theory based on this principle continues.

کلیدواژه‌ها [English]

  • general relativity
  • Mach’s principle
  • relativity of all motion
  • absolute space
  • absolute motion
  • inertial forces
میراحمدی، سید سعید، سخاوتیان، سید امیر، محسن‌زاده گنجی، مجید (1401). «ارسطو و اصل ماخ»، فلسفه علم، 12(1)، 183-203.
 
Agudelo, J. A., Nascimento, J. R., Petrov, A. Y., Porfírio, P. J., Santos, A. F. (2016). “Gödel and Gödel-type universes in Brans–Dicke theory,” Physics Letters B, 762, 96-101.
Alexander, H. G. (ed.) (1977). The Leibniz-Clarke Correspondence, Manchester: Manchester University Press.
Assis, A. K. T. (2017). Relational mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force, Montreal: Apeiron.
Assis, A. K. T. (1994). Weber’s electrodynamics, Dordrecht: Kluwer Academic Publishers.
Assis, A. K. T. (2000). “Comment on ‘Experimental proof of standard electrodynamics by measuring the self-force on a part of a current loop’,” Physical Review E, 62(5), 7544.
Barbour, J. (2012). “Shape dynamics. An introduction.” In: Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework (pp. 257-297). Basel: Springer Basel.
Barnes, J. (1984). Complete works of Aristotle, The revised Oxford translation. Princeton University Press.
Brans, C. H. (1962). Mach's principle and the locally measured gravitational constant in general relativity. Physical Review, 125(1), 388.
Berkeley, G. ([1710] 1988). The principles of Human Knowledge, Edited by Roger Woolhouse, London: Penguin Books.
Born, M. (1962). Einstein’s Theory of Relativity, New York: Dover.
Brans, C. H., Dicke, R. H. (1961). “Mach’s principle and a relativistic theory of gravitation,” Physical review, 124(3), 925.
Brans, C. H. (1977). “Absence of Inertial Induction in General Relativity,” Phys. Rev. Lett., 39 (14), 856-7.
Cartan, É. (1923). “Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie),” Ann. Sci. Éc. Norm. Supér, 40, 325-412. (In French)
Cartan, É. (1924). “Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie)(suite),” Ann. Sci. Éc. Norm. Supér, 41, 1-25. (In French)
Cartan, É. (1925). “Sur les variétés à connexion affine, et la théorie de la relativité généralisée (deuxième partie),” Ann. Sci. Éc. Norm. Supér, 42, 17-88. (In French)
Cavalleri, G., Bettoni, G., Tonni, E., Spavieri, G. (1998). “Experimental proof of standard electrodynamics by measuring the self-force on a part of a current loop,” Physical review E, 58(2), 2505.
Cavalleri, G., Cesaroni, E., Tonni, E., Spavieri, G. (2003). “Interpretation of the longitudinal forces detected in a recent experiment of electrodynamics,” The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 26(2), 221-226.
de Sitter, W. (1917). “On the curvature of space,” In: (1918). Proc. Kon. Ned. Akad. Wet., Vol., 20, p. 229-243.
Earman, J. (1970). “Who’s afraid of absolute space?,” Australasian Journal of Philosophy, 48(3), 287-319.
Einstein, A. (1905). “On the Electrodynamics of Moving Bodies.” In: A. Einstein, H. A. Lorentz, H. Weyl and H. Minkowski (1952). The Principle of Relativity, p. 35-65, New York: Dover.
Einstein, A. (1907). “On the Relativity Principle and the Conclusions Drawn from It.” In: Stachel, J., et al., Eds., Beck, A. (translators) (2002). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1900-1909, Vol. 2, p. 252-311, Princeton University Press, Princeton. 
Einstein, A. (1912). “Is There a Gravitational Effect Which Is Analogous to Electrodynamic Induction?” In: A. Beck (translator) (1996). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1912-1914, Vol. 4, p. 126-129, Princeton, New Jersey: Princeton University Press.
Einstein, A., Grossmann, M. (1913a). “Outline of a Generalized Theory of Relativity and of a Theory of Gravitation.” In: A. Beck (translator) (1996). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1912-1914, Vol. 4, p. 151-188, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1913b). “Theory of Gravitation.” In: A. Beck (translator) (1996). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1912-1914, Vol. 4, p. 190-191, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1913c). “Physical Foundations of a Theory of Gravitation.” In: A. Beck (translator) (1996). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1912-1914, Vol. 4, p. 192-197, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1913d). “On the Present State of the Problem of Gravitation.” In: A. Beck (translator) (1996). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1912-1914, Vol. 4, p. 198-222, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1914a). “On the Theory of Gravitation.” In: A. Beck (translator) (1996). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1912-1914, Vol. 4, p. 291-292, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1914b). “On the Relativity problem.” In: A. Beck (translator) (1996). The Collected Papers of Albert Einstein, the Swiss Years: Writings, 1912-1914, Vol. 4, p. 306-314, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1916a). “The Foundation of the General Theory of Relativity.” In: A. Engel (translator) (1997). The Collected Papers of Albert Einstein, the Berlin Years: Writings, 1914-1917, Vol. 6, p. 146-200, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1916b). “On Friedrich Kottler’s Paper: ‘On Einstein’s Equivalence Hypothesis and Gravitation’.” In: A. Engel (translator) (1997). The Collected Papers of Albert Einstein, the Berlin Years: Writings, 1914-1917, Vol. 6, p. 237-239, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1917). “Cosmological Considerations in the General Theory of Relativity.” In: A. Engel (translator) (1997). The Collected Papers of Albert Einstein, the Berlin Years: Writings, 1914-1917, Vol. 6, p. 421-232, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1918a). “On the Foundations of the General Theory of Relativity.” In: A. Engel (translator) (2002). The Collected Papers of Albert Einstein, the Berlin Years: Writings, 1918-1921, Vol. 7, p. 33-35, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1918b). “Dialogue about Objections to the Theory of Relativity.” In: A. Engel (translator) (2002). The Collected Papers of Albert Einstein, the Berlin Years: Writings, 1918-1921, Vol. 7, p. 66-75, Princeton, New Jersey: Princeton University Press.
Einstein, A. (1982). “How I created the theory of relativity?” (Translated by Yoshimasa A. Ono from notes taken by Jun Ishiwara from Einstein’s lecture in Kyoto on 14 Dec 1922), Physics today, 35: 8, 45-47.
Einstein, A. (1924). Relativity: the special and the general theory. Methuen & Co Ltd.
Einstein, A. (2003). The Meaning of Relativity, Routledge.
Einstein, A. (1949). “Autobiographical Notes.” In: Albert Einstein, Philosopher-Scientist. Paul A. Schilpp, ed. Evanston, Illinois: Library of Living Philosophers.
Erlichson, H. (1967). “The Leibniz-Clarke controversy: absolute versus relative space and time,” American Journal of Physics, 35: 89–98.
Friedrichs, K. (1928). “Eine invariante formulierung des Newtonschen gravitationsgesetzes und des grenzüberganges vom Einsteinschen zum Newtonschen gesetz,” Mathematische Annalen, 98(1), 566-575. (in German)
Giovanelli, M. (2021). “Nothing but coincidences: the point-coincidence and Einstein’s struggle with the meaning of coordinates in physics,” European Journal for Philosophy of Science, 11(2), 45.
Giovanelli, M. (2013). “Erich Kretschmann as a proto-logical-empiricist: Adventures and misadventures of the point-coincidence argument,” Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(2), 115-134.
Gomes, H., Koslowski, T. (2012). “The link between general relativity and shape dynamics,” Classical and Quantum Gravity, 29(7), 075009. 
Gomes, H., Koslowski, T. (2013). “Frequently asked questions about shape dynamics,” Foundations of Physics, 43, 1428-1458.
Gödel, K. (1949). “An example of a new type of cosmological solutions of Einstein’s field equations of gravitation,” Rev. Mod. Phys., 26, 447-450.
Grünbaum, A. (1957). “The philosophical retention of absolute space in Einstein’s General Theory of Relativity,” The Philosophical Review, 66(4), 525-534.
Hoefer, C. (1995). “Einstein’s Formulations of Mach’s Principle.” In: Barbour, J. B., Pfister, H. (Editors) (1995). Mach’s Principle — From Newton’s Bucket to Quantum Gravity, pages 67–87, Boston, Birkhäuser.
Hoyle, F., Narlikar, J. V. (1964). “A new theory of gravitation,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 282(1389), 191-207.
Jammer, M. (1993) Concepts of Space — The History of Theories of Space in Physics, 3rd edition, New York: Dover.
Kerszberg, P. (1989). “The Einstein-de Sitter Controversy of 1916-1917 and the Rise of Relativistic Cosmology.” In: Howard, D., Stachel, J. (Eds.) (1989). Einstein and the History of General Relativity, Einstein Studies, Vol. 1, p. 325-366, Boston: Birkhauser.
Koslowski, T. A. (2014). “Shape dynamics,” In: Relativity and Gravitation: 100 Years after Einstein in Prague (pp. 111-118), Springer International Publishing.
Kretschmann, E. (1915a). “Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger Relativitätstheorien, Part I,” Annalen der Physik, 23, 907–942. (In German)
Kretschmann, E. (1915b). “Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger Relativitätstheorien, Part II,” Annalen der Physik, 23, 943–982. (In German)
Kretschmann, E. (1917). “Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie,” Annalen der Physik, Leipzig, 53, 575-614. (In German)
Lichtenegger, H., Mashhoon, B. (2007). “Mach’s Principle.” In: Iorio, L. (2007). The Measurement of Gravitomagnetism: A Challenging Enterprise, (NOVA Science, Hauppage, NY), Chapter 2. [arXiv: physics/0407078 [physics.hist-ph]]
Mach, E. (1960). The Science of Mechanics — A Critical and Historical Account of Its Development, La Salle, Illinois: Open Court Press, 6th edition. Translated by J. McCormack.
Markosian, N. (1993). “How fast does time pass?” Philosophy and Phenomenological Research, 53(4), 829-844.
Mashhoon, B. (1994). “On the origin of inertial accelerations,” Il Nuovo Cimento B (1971-1996), 109(2), 187-199.
Mashhoon, B., Hehl, F. H., Theiss, D. S. (1984). “On the gravitational effects of rotating masses: the Thirring-Lense papers,” General Relativity and Gravitation, 16:711–750.
Mashhoon, B. (1988). “Complementarity of absolute and relative motion,” Physics Letters A, 126:393–399.
Maxwell, J. C. (1954). A Treatise on Electricity and Magnetism, New York: Dover, 2 volumes.
Mercati, F. (2018). Shape dynamics: Relativity and relationalism. Oxford University Press.
Misner, C. W., Thorne, K. S., Wheeler, J. A. (1973). Gravitation, Macmillan.
Narlikar, J. V. (2011). “Mach’s principle,” Resonance, 16(4), 310-321.
Newton, I. (1999). The principia: Mathematical principles of natural philosophy (I. B. Cohen & A. Whitman, Trans.). Berkeley: University of California Press (third edition of Principia originally published 1727).
Norton, J. D. (1984). “How Einstein Found His field Equations. 1912–1915,” Historical Studies in the Physical Sciences, 14, 253–316.
Norton, J. D. (1987). “Einstein, the Hole Argument and the Reality of Space,” In: Forge, J. (Ed.) (1987) Measurement, Realism, and Objectivity. Essays on Measurement in the Social and Physical sciences, Dordrecht, Boston/London: Kluwer, 153–188.
Norton, J. D. (1995). “Mach’s principle before Einstein.” In: Barbour, J. B., Pfister, H. (Editors) (1995). Mach’s Principle — From Newton’s Bucket to Quantum Gravity, pages 9–57, Boston, Birkhäuser.
Norton, J. D. (2007). “Einstein, Nordström, and the early demise of scalar, Lorentz covariant theories of gravitation.” In: Janssen, M., Norton, J. D., Renn, J., Sauer, T., Stachel, J. (Eds.) (2007). The genesis of general relativity, Vol. 3, 413- 487.
Norton, J. D. (2022), “The Hole Argument,” The Stanford Encyclopedia of Philosophy (Winter 2022 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL =
<https://plato.stanford.edu/archives/win2022/entries/spacetime-holearg/>.
Olson, E. T. (2009). “The rate of time’s passage,” Analysis, 69(1), 3-9.
Rindler, W. (1977). Essential relativity: special, general, and cosmological. (2nd Ed.). Springer-Verlag Berlin Heidelberg.
Schlick, M. (1915). “The philosophical significance of the principle of relativity.” In: H. L. Mulder, H. L., van de Velde-Schlick, B. F. B.  (Editors) (1979). Philosophical Papers of Moritz Schlick, volume 1, pages 153–189. Reidel, Dordrecht. Translated by P. Heath.
Schrödinger, E. (1925). “The possibility of fulfillment of the relativity requirement in classical mechanics.” In: Barbour, J. B., Pfister, H. (Editors) (1995). Mach’s Principle — From Newton’s Bucket to Quantum Gravity, pages 147–158, Boston: Birkhäuser. (Translated by J. B. Barbour).
Sciama, D. W. (1953). “On the origin of inertia,” Monthly Notices of the Royal Astronomical Society, 113(1), 34-42.
Smart, J. J. C. (1949). “The river of time,” Mind, 58.232, 483-494.
Stachel, J. (1980). “Einstein’s Search for General Covariance, 1912–1915.” The paper was first read at the Ninth International Conference on General Relativity and Gravitation, Jena in 1980; repr. In: Stachel, J. (2002). Einstein from ‘B’ to ‘Z’, Boston: Birkhäuser, 301-337.
Stachel, J. (2014). “The Hole Argument and Some Physical and Philosophical Implications,” Living Reviews in Relativity, 17, 1-66.
Stan, M. (2016). “Huygens on Inertial Structure and Relativity,” Philosophy of Science, 83(2), pp.277-298.
Suchting, W. A. (1961). “Berkeley’s Criticism of Newton on Space and Motion,” Isis, 58: 186–97.
Taub, A. H. (1951). “Empty space-times admitting a three parameter group of motions,” Ann. Math. 53, 472-490.
Torretti, R. (1983). Relativity and Geometry, Oxford: Pergamon Press.
Wesley, J. P. (1990a). “Weber electrodynamics, Part I. General theory, steady current effects,” Foundations of Physics Letters, 3(5), 443-469.
Wesley, J. P. (1990b). “Weber electrodynamics, part II unipolar induction, Z-antenna,” Foundations of Physics Letters, 3(5), 471-490.
Wesley, J. P. (1990c). “Weber electrodynamics: part III. Mechanics, Gravitation,” Foundations of Physics Letters, 3(6), 581-605.
Whittaker, E. T. (1973). A History of the Theories of Aether and Electricity, Vol. 1: The Classical Theories, Vol. 2: The Modern Theories, New York: Humanities Press.