نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری کلام اسلامی، دانشکده الهیات و معارف اسلامی دانشگاه قم

2 دانشیار گروه فلسفه، دانشکده الهیات و معارف اسلامی دانشگاه قم

چکیده

با پیشرفت شگرف فیزیک و زیررشته‌های آن از قبیل کیهان‌شناسی و فیزیک کوانتوم، براهین غایت شناختی درباره‌ی وجود خدا به ویژه برهان تنظیم ظریف کیهانی در صدر مباحث الهیاتی قرار گرفت. به موازات حمایت‌های متعدد از این برهان، چالش‌های گوناگونی نیز در مورد آن از سوی منتقدین مطرح گشت. چالش اندازه یکی از برجسته‌ترینِ این چالش‌ها است که کاربست حساب احتمالات در این برهان را هدف می‌گیرد. بر اساس این چالش، حساب احتمالات توانایی تامین اصل موضوعی شمارا-جمع‌پذیری در مجموعه‌های نامتناهی را دارا نیست و از این رو حساب احتمالات به کار رفته در برهان مبتلی به مشکل هنجارناپذیری است. در مواجهه با این چالش معمولا دو راهبرد از سوی حامیان این برهان پی‌ریزی می‌شود. راهبرد اول، پذیرفتن چالش و تلاش برای دور زدن آن از طریق بهنجارسازی احتمالات است و راهبرد دوم طبیعی جلوه دادن کاربست احتمالات هنجارناپذیر در دانش‌های گوناگون از قبیل کیهان‌شناسی و میکانیک آماری است. ما در این مقاله علاوه بر بررسی چالش اندازه و نقد دو راهبرد پیش‌گفته، راهبرد سومی را که چندان توسط حامیان برهان تنظیم ظریف جدی گرفته نشده است مطرح و از آن دفاع خواهیم نمود. در این راهبرد بعد از نگاهی هستی‌شناختی به چالش اندازه نشان خواهیم داد که تامین اصل موضوعی شمارا-جمع‌پذیری لازم نیست و می‌توان به اصل شمارا‌متناهی بودن در حساب احتمالات برهان تنظیم ظریف اکتفا کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Fine-tuning Argument and the Measure Challenge

نویسندگان [English]

  • Qasem Muhammadi 1
  • Farah Ramin 2

1

2 Faculty of Theology , University of Qom

چکیده [English]

With the dramatic advancement in physics and its sub-fields such as cosmology and quantum physics, teleological arguments for the existence of God, especially the fine-tuning argument came to the spotlight in theological discussions. Along with the widespread support for this argument, various challenges also have been raised against this argument by critics. The measure challenge seems to be of the most promising of these challenges. It calls into question the use of probability calculus in the argument and asserts that the axiom of ‘countable additivity’ has been violated in such probabilities and they are, hence, non-normalizable and illogical. Facing this challenge, two strategies are normally put forward by the proponents of the fine-tuning argument. The first strategy is to accept the challenge and try to circumvent it by normalizing the probabilities. The second strategy depicts non-normalizable probabilities as a usual phenomenon in various sciences such as cosmology and statistical mechanics and as such, considers it a rather justifiable anomaly in probabilities utilized in fine-tuning argument. In this article, in addition to reviewing the measure challenge as well as the two aforementioned strategies, we will discuss and defend a third strategy that has not been widely addressed by the proponents of fine-tuning argument. In this strategy, by raising ontological questions about the measure theory, we argue that the axiom of countable additivity is not a binding axiom and may be forsaken or be replaced by an alternative axiom, namely finite additivity.

کلیدواژه‌ها [English]

  • Fine-tuning argument
  • measure theory
  • probability theory
  • non-normalizability
  • countable additivity
Barnes, A. Luke, and G. Lewis (2016), A Fortunate Universe, Cambridge: Cambridge University Press.
Brown, J. (2008), Philosophy of Mathematics: A Contemporary Introduction to the World of Proofs and Pictures, New York and London: Routledge.
Collins, Robin (2009), The Blackwell Companion to Natural Theology, William Lane Craig and J. P. Moreland (eds.),West Sussex: Blackwell.
De Finetti, B. (1972), Probability, Induction, and Statistics, New York: Wiley.
De Finetti, B. (1990), Theory of Probability: A Critical Introductory Treatment, trans. A. Machi and A. Smith, 2 vols, Chichester: John Wiley & Sons.
Easwaran, K. (2008), “The Role of Axioms in Mathematics”, Erkenntnis, vol. 68, no. 3.
Ellis, G., U. Kirchner, and W. Stoeger (2003), “Defining Multiverses”, Monthly Notices of the Royal Astronomical Society, <archive.org/astro-ph/0305292>.
Friederich, S. (2018), “Fine-Tuning”, The Stanford Encyclopedia of Philosophy, <https://plato.stanford.edu/archives/win2018/entries/fine-tuning/>.
Gibbons, G., S Hawking, and J. Stewart (1987), “A Natural Measure on the Set of All Universes”, Nuclear Physics, vol. 281.
Halmos, P. (1974), Measure Theory, New York: Springer.
Hawking, S. and D. Page (1988), “How Probable is Inflation?”, Nuclear Physics, vol. 298.
Holder, R. (2001b), “The Realization of Infinitely Many Universes in Cosmology ”, Religious Studies, vol. 37, no. 3
Holder, R. (2001a), “Fine-Tuning, Many Universe, and Design”, Science and Christian Belief, vol. 13.
Kirchner, U. and G. Ellis (2003), “A Probability Measure for FLRW Models”, Classical and Quantum Gravity, vol. 20.
Kolmogorov, A. (1956), Foundations of the Theory of Probability, trans. Nathan Morrison, New York: Chelsea Publishing Company.
Koperski, Jeffrey (2015), The Physics of Theism, Herausgeber: Wiley-Blackwell.
Koperski, Jeffrey (2005), “Should We Care about Fine-Tuning?”, The British Journal for the Philosophy of Science, vol. 56, no. 2.
Liddle, A. and D. Lyth. (2000), Cosmological Inflation and Large-Scale Structure, London: Cambridge University Press.
Maddy, P. (1988), “Believing the Axioms, I.”, Symbolic Logic, vol. 53, no. 2.
Manson, N. (2000), “There is No Adequate Definition of ‘Fine-tuned’ for Life”, Inquiry,vol. 43, no. 3.
Martin, N. and J. England (1981), “Mathematical Theory of Entropy”, in: The Encyclopedia of Mathematics and Its Applications, vol. 12, London: Cambridge.
McGrew, T., L. McGrew, and E. Vestrup (2001), “Probabilities and the Fine-Tuning Argument: a Sceptical View”, Mind, vol. 110.
Mendelson, E. (1997), Introduction to Mathematical Logic, New York: Chapman & Hall.
Parsons, C. (1980), “Mathematical Intuition”, Proceedings of the Aristotelian Society, vol. 80.
Plantinga, A. (1993), Warrant and Proper Function, New York: Oxford University Press.
Rees, D. (1967), “Platonism and the Platonic Tradition”, in: The Encyclopedia of Philosophy, Paul Edwards (ed.), vol. 5, New York: Macmillan.
Sklar, L. (1993), Physics and Chance, Cambridge: Cambridge University Press.
Solovay, R. (1970), “A Model of Set-Theory in Which Every Set of Reals Is Lebesgue Measurable”, Annals of Mathematics, Second Series, vol. 92, no. 1.
Von Plato, J. Creating (1994), Modern Probability, Its Mathematics, Physics and Philosophy in Historical Perspective, New York: Cambridge University Press.
Wagon, S. (1994), The Banach-Tarski Paradox, Cambridge: Cambridge University Press.
Weatherford, R. (1982), Foundations of Probability Theory, Boston: Routledge and Kegan Pau.