نوع مقاله : پژوهشی

نویسندگان

1 گروه معارف اسلامی، دانشکده علوم انسانی دانشگاه بجنورد

2 گروه مهندسی کامپیوتر، دانشکده مهندسی دانشگاه بجنورد

3 معارف اسلامی. دانشکده علوم انسانی. دانشگاه بجنورد

چکیده

چکیده
پیشرفت شگرف بشر در تولید و ذخیره‌سازی انبوه داده‌ها و نیز استفاده از آن‌ها در ساختن ماشین استنتاج‌گر، امروزه در قالب یک فناوری پیشرفته به نام «یادگیری عمیق ماشینی» ظهور یافته است. این فناوری با الهام از اتصالات موجود در ساختار مغز جانداران طراحی شده و از شبکه‌های عصبی مصنوعی عمیق قدرت می‌گیرد. توانایی آن در استنتاج خبره‌گونه در زمینه‌های مختلف و یا تولید آثار مشابه افراد زبردست، با وجود مزایای بسیار، انسان امروز را با چالش‌های مختلفی رو در رو می‌سازد. این نوشتار تلاش می‌کند با رویکرد نظام‌مند عقلی- فلسفی به تحلیل و معرفی چالش‌های اخلاقی یادگیری عمیق ماشینی و ارائه رهیافت مناسب در قبال هر یک از این چالش‌ها بپردازد. اگرچه یادگیری عمیق ماشینی چالش‌های قابل توجهی بر سر راه انسان قرار داده، با آگاهی و چاره اندیشی نسبت به آن‌ها، می‌توان در عین بهره بردن از مزایای چشمگیر این فناوری، ارزش‌های انسانی را نیز آگاهانه محافظت نمود.
واژگان کلیدی
یادگیری ماشین، یادگیری عمیق، شبکه‌های عصبی مصنوعی، اخلاق اطلاعات، چالش فلسفی.

کلیدواژه‌ها

عنوان مقاله [English]

Deep learning technology, philosopical challenges and approaches

نویسندگان [English]

  • reza niroomand 1
  • hamid fadishaei 2
  • elham mohammadzadeh 3

1 Department of Islamic Studies, Faculty of Humanities, University of Bojnourd.

2 Department of Computer Engineering. The University of Bojnord

3

چکیده [English]

Deep learning technology, philosophical challenges and approaches
Abstract
The unprecedented human’s advancement in generating and storing piles of data, and exploiting such large amounts of data for building reasoning machines has manifested as a technology known as “deep learning”. This technology is inspired by the brain’s connectivity structure and is empowered by deep artificial neural networks. In spite of numerous benefits offered by their great power in reasoning like experts or creating things like skillful people, this technology imposes some ethical challenges to human’s life. This article tries to present the ethical challenges of deep learning technology that threaten humanity and tries to address them by employing a rational-philosophical approach. Although deep learning technology imposes several ethical challenges on our lives, it is still possible to benefit from big data without sacrificing our ethical values provided we gain awareness about and preparation against such challenges.
Keywords
Machine Learning, Deep Learning, Artificial Neural Networks, Information ethics, philosophical challenge

کلیدواژه‌ها [English]

  • Keywords: Machine Learning
  • Deep Learning
  • Artificial Neural Networks
  • Information ethics
  • philosophical challenges
فدیشه‌ای، حمید، رضا نیرومند، و الهام محمدزاده (1395)، «چالش‌های اخلاقی بزرگ‌داده‌ها»، اخلاق در علوم و فناوری، س 11، ش 4، زمستان.
 
Adams, Warwick R. (2017), “High-Accuracy Detection of Early Parkinson’s Disease Using Multiple Characteristics Of Finger Movement While Typing”, Plos One, vol. 12, no. 11.
Agarwala, Nipun, Yuki Inoue, and Axel Sly (2017), “Music Composition Using Recurrent Neural Networks”,
<https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports.html >
Anderson C. (2008), “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete”, Wired Magazine; vol. 16, no. 7.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016), Deep learning, Verlag: MIT Press.
Harris, Douglas (2018), “Deepfakes: False Pornography Is Here and the Law Cannot Protect You”, Duke L. & Tech, vol. 17, no. 1.
Helbing, D. et al (2019), “Will Democracy Survive Big Data and Artificial Intelligence?”, in: Towards Digital Enlightenment, Helbing (ed.), Zürich: Springer.
Helbing, D (2019), “Societal, Economic, Ethical and Legal Challenges of the Digital Revolution: From Big Data to Deep Learning, Artificial Intelligence, and Manipulative Technologies”, Towards Digital Enlightenment, Helbing (ed.), Zürich: Springer.
Huang, Xun, and Serge Belongie (2017), “Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization”, Proceedings of the IEEE International Conference on Computer Vision, <https://ieeexplore.ieee.org/document/8237429>.
Jannach, Dietmar and Malte Ludewig (2017), “When Recurrent Neural Networks Meet the Neighborhood for Session-Based Recommendation”, Proceedings of the Eleventh ACM Conference on Recommender Systems.
Mitchell, Thomas M. (1997), Machine learning (McGraw Hill Series in Computer Science), New York: McGraw-Hill Education Ltd.
Sarikaya, Ruhi (2017), “The Technology behind Personal Digital Assistants: An Overview of the System Architecture and Key Components”, IEEE Signal Processing, vol. 34, no.1.
Sun, Wenqing (2016) “A Preliminary Study On Breast Cancer Risk Analysis Using Deep Neural Network”, International Workshop on Breast Imaging, Springer, Cham.
Van den Oord, Aaron, Sander Dieleman, and Benjamin Schrauwen (2013), “Deep Content-Based Music Recommendation”, in: Advances in Neural Information Processing Systems, Burges and Bottou and Welling and Ghahramani and Weinberger (eds.),
<https://papers.nips.cc/paper/2013 https://papers.nips.cc/paper/2013>.
Wright, Sewall (1921, “Correlation and Causation”, Journal of Agricultural Research, vol. 20, no.7.
Yeung, K (2017), “Hypernudge: Big Data as a Mode of Regulation by Design”, Information, Communication, and Society, vol. 20, no. 1.
Zhang, Quan-shi and Song-Chun Zhu (2018), “Visual Interpretability for Deep Learning: A Survey”, Frontiers of Information Technology and Electronic Engineering, vol. 19, no. 1.