Document Type : Research Paper

Author

Department of philosophy,, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

By adding detailed scientific data together, more general images can be drawn. These more general images are themselves fallible models that can, of course, better represent a picture of the future than blind conjectures. In the present article, a series of empirical findings are put together to defend the claim that "the Covid-19 pandemic, by speed up the changes that are taking place in the human microbiome (= the collection of all microbes that take part in symbiosis with human), has intense effects on human physical and mental health, emotions and cognition, and social relationships." This is the main argument of the article in defending this claim. The composition of the microbiome affects physical and mental health, emotions and cognition, and human social relationships, and therefore a change in the microbiome leads to a change in these aspects. The microbiome has changed over the course of human evolution, and this trend has accelerated in the last two centuries. The Covid-19 pandemic could bring about more changes in the human microbiome. In support of the premise, some have been selected and presented from the mass of data.

Keywords

  • صمدی، هادی. (1399). «بحران تکرارپذیری و ضرورت تغییر در سیاست‌گذاری چاپ مقالات علمی». حوزه و دانشگاه، روش شناسی علوم انسانی.. doi: 10.30471/mssh.2021.7371.2157

 

 

  • Amábile-Cuevas, C. F. (Ed.). (2007). Antimicrobial resistance in bacteria. Horizon Scientific Press.
  • Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial intelligence, 149(1), 91-130.
  • Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. (October 2015). "A global reference for human genetic variation". Nature. 526 (7571): 68–74.
  • Beasley, D. E., Koltz, A. M., Lambert, J. E., Fierer, N., & Dunn, R. R. (2015). The evolution of stomach acidity and its relevance to the human microbiome. PloS one, 10(7), e0134116.
  • Bercik, P. et al. (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609
  • Betrán, A. P., Ye, J., Moller, A. B., Zhang, J., Gülmezoglu, A. M., & Torloni, M. R. (2016). The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. PloS one, 11(2), e0148343.
  • Bhattacharjee, S., & Lukiw, W. J. (2013). Alzheimer's disease and the microbiome. Frontiers in cellular neuroscience, 7, 153.
  • Blaser, M. J. (2016). Antibiotic use and its consequences for the normal Science, 352(6285), 544-545.
  • Bushman, R. L., & Bushman, C. L. (1988). The early history of cleanliness in America. The Journal of American History, 74(4), 1213-1238.
  • Cani, PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 57:1470–81
  • Chang, Q., Wang, W., Regev‐Yochay, G., Lipsitch, M., & Hanage, W. P. (2015). Antibiotics in agriculture and the risk to human health: how worried should we be?.Evolutionary applications, 8(3), 240-247.
  • David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., ... & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut Nature, 505(7484), 559-563.
  • de Jong, S. E., Olin, A., & Pulendran, B. (2020). The impact of the microbiome on immunity to vaccination in humans. Cell host & microbe, 28(2), 169-179.
  • DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature ecology & evolution, 1(5), 1-7.
  • Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2014). Microbiota is essential for social development in the Molecular Psychiatry, 19(2), 146
  • Dinan, T. G., Stilling, R. M., Stanton, C., & Cryan, J. F. (2015). Collective unconscious: How gut microbes shape humanbbehavior. Journal of Psychiatric Research, 63, 1–9.
  • Domingues, C. P., Rebelo, J. S., Dionisio, F., Botelho, A., & Nogueira, T. (2020). The Social Distancing Imposed To Contain COVID-19 Can Affect Our Microbiome: a Double-Edged Sword in Human Health. MSphere, 5(5).
  • Ege, M. J., Mayer, M., Normand, A. C., Genuneit, J., Cookson, W. O., Braun-Fahrländer, C., ... & von Mutius, E. (2011). Exposure to environmental microorganisms and childhood asthma. New England Journal of Medicine, 364(8), 701-709.
  • Finlay, B. B., Amato, K. R., Azad, M., Blaser, M. J., Bosch, T. C., Chu, H., ... & Giles-Vernick, T. (2021). The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proceedings of the National Academy of Sciences, 118(6).
  • Fox, M., Knapp, L. A., Andrews, P. W., & Fincher, C. L. (2013). Hygiene and the world distribution of Alzheimer’s diseaseEpidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evolution, medicine, and public health, 2013(1), 173-186.
  • Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378.
  • Gareau, M.G. et al. (2010) Bacterial infection causes stress induced memory dysfunction in mice. Gut 60, 307–317
  • Gibbs, F. W. (1939). The history of the manufacture of soap. Annals of Science, 4(2), 169-190.
  • Gilbert, Jack; Blaser, Martin J.; Caporaso, J. Gregory; Jansson, Janet; Lynch, Susan V.; Knight, Rob (10 April 2018). "Current understanding of the human microbiome". Nature Medicine. 24 (4): 392–400. 
  • Gilbert, Jack; Blaser, Martin J.; Caporaso, J. Gregory; Jansson, Janet; Lynch, Susan V.; Knight, Rob (10 April 2018). "Current understanding of the human microbiome". Nature Medicine. 24 (4): 392–400. 
  • Gottfried, J. (2005). History Repeating? Avoiding a Return to the Pre-Antibiotic Age.
  • Haahtela, T. (2019). A biodiversity hypothesis. Allergy, 74(8), 1445-1456.
  • Hauser, M. D.; Yang, C.; Berwick, R. C.; Tattersall, I.; Ryan, M. J.; Watumull, J.; Chomsky, N.; Lewontin, R. C. (2014). "The mystery of language evolution". Frontiers in Psychology. 5: 401.
  • Hoang, D. M., Levy, E. I., & Vandenplas, Y. (2021). The impact of Caesarean section on the infant gut microbiome. Acta Paediatrica, 110(1), 60-67.
  • Hooks, K. B., Konsman, J. P., & O'Malley, M. A. (2019). Microbiota-gut-brain research: a critical analysis. Behavioral and Brain Sciences, 42.
  • Jakobsson, H. E., Jernberg, C., Andersson, A. F., Sjölund-Karlsson, M., Jansson, J. K., & Engstrand, L. (2010). Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PloS one, 5(3), e9836.
  • Jenkins, M., Houge Mackenzie, S., Hodge, K., Hargreaves, E. A., Calverley, J. R., & Lee, C. (2021). Physical Activity and Psychological Well-Being During the COVID-19 Lockdown: Relationships With Motivational Quality and Nature Contexts. Frontiers in Sports and Active Living, 3, 43.
  • Kaplan, H., Gangestad, S., Gurven, M., Lancaster, J., Mueller, T., & Robson, A. (2007). The evolution of diet, brain and life history among primates and humans. Guts and brains: An integrative approach to the hominin record, 47-48.
  • Kelly, J.R. et al. (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109–118
  • Korpela, K., Flint, H. J., Johnstone, A. M., Lappi, J., Poutanen, K., Dewulf, E., ... & Salonen, A. (2014). Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PloS one, 9(3), e90702.
  • Laatikainen, T., Von Hertzen, L., Koskinen, J. P., Mäkelä, M. J., Jousilahti, P., Kosunen, T. U., ... & Haahtela, T. (2011). Allergy gap between Finnish and Russian Karelia on increase. Allergy, 66(7), 886-892.
  • Lipsitch, M., Singer, R. S., & Levin, B. R. (2002). Antibiotics in agriculture: When is it time to close the barn door?. Proceedings of the National Academy of Sciences, 99(9), 5752-5754.
  • Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome medicine, 8(1), 1-11.
  • Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., Alt, D. P., Stedtfeld, R. D., ... & Stanton, T. B. (2012). In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences, 109(5), 1691-1696.
  • Lorenz, E. (2000). The butterfly effect. World Scientific Series on Nonlinear Science Series A, 39, 91-94.
  • Low, S., Chin, M. C., & Deurenberg-Yap, M. (2009). Review on epidemic of obesity. Annals Academy of Medicine Singapore, 38(1), 57.
  • Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?. Nutrients, 12(5), 1474.
  • Martens, E., & Demain, A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. The Journal of antibiotics, 70(5), 520-526.
  • Milaneschi, Y., Simmons, W. K., van Rossum, E. F., & Penninx, B. W. (2019). Depression and obesity: evidence of shared biological mechanisms. Molecular psychiatry, 24(1), 18-33.
  • Odriozola-González, P., Planchuelo-Gómez, Á., Irurtia, M. J., & de Luis-García, R. (2020). Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry research, 290, 113108.
  • Oliveros, E. et al. (2016) Oral supplementation of 20-fucosyllactose during lactation improves memory and learning in rats. J. Biochem. 31, 20–27
  • Patterson, K. B., & Runge, T. (2002). Smallpox and the native American. The American journal of the medical sciences, 323(4), 216-222.
  • Quek, Y. H., Tam, W. W., Zhang, M. W., & Ho, R. C. (2017). Exploring the association between childhood and adolescent obesity and depression: a meta‐Obesity reviews, 18(7), 742-754.
  • Renson, A., Herd, P., & Dowd, J. B. (2020). Sick individuals and sick (microbial) populations: challenges in epidemiology and the microbiome. Annual review of public health, 41, 63-80.
  • Rocca, J. D., et.al., (2019). The microbiome stress project: toward a global meta-analysis of environmental stressors and their effects on microbial communities. Frontiers in microbiology, 9, 3272.
  • Ruokolainen, L., Paalanen, L., Karkman, A., Laatikainen, T., Von Hertzen, L., Vlasoff, T., ... & Haahtela, T. (2017). Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clinical & Experimental Allergy, 47(5), 665-674.
  • Sarkar, A., Harty, S., Lehto, S. M., Moeller, A. H., Dinan, T. G., Dunbar, R. I., ... & Burnet, P. W. (2018). The microbiome in psychology and cognitive neuroscience. Trends in cognitive sciences, 22(7), 611-636.
  • Savage, D.C., (1977),  “Microbial ecology of the gastrointestinal tract”, Annu Rev Microbiol, 31 (1)  pp. 107-133
  • Sender R, Fuchs S, Milo R (2016). "Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans". Cell. 164 (3): 337–40.
  • Sharot, T. (2011). The optimism bias. Current biology, 21(23), R941-R945.
  • Shields, G. S. (2020). Stress and cognition: A user’s guide to designing and interpreting studies. Psychoneuroendocrinology, 112, 104475.
  • Sneeringer, S., MacDonald, J. M., Key, N., McBride, W. D., & Mathews, K. (2015). Economics of antibiotic use in US livestock production. USDA, Economic Research Report, (200).
  • Spencer, S. J., Korosi, A., Layé, S., Shukitt-Hale, B., & Barrientos, R. M. (2017). Food for thought: how nutrition impacts cognition and emotion. npj Science of Food, 1(1), 1-8.
  • Stekel, D. (2018). First report of antimicrobial resistance pre-dates penicillin. Nature, 562(7726).
  • Strachan, D. P. (2000). Family size, infection and atopy: the first decade of the 'hygiene hypothesis'. Thorax, 55(Suppl 1), S2.
  • Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology ofmajor depression: review and meta-analysis.( 2000); Am J Psychiatry. 157:1552–
  • Sutaria, S., Devakumar, D., Yasuda, S. S., Das, S., & Saxena, S. (2019). Is obesity associated with depression in children? Systematic review and meta-analysis. Archives of disease in childhood, 104(1), 64-74.
  • The Human Microbiome Project Consortium (June 2012). "Structure, function and diversity of the healthy human microbiome". Nature. 486 (7402): 207–14.
  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. nature, 444(7122), 1027-1031.
  • Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E. F., Wang, J., Tito, R. Y., ... & Raes, J. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nature microbiology, 4(4), 623-632.
  • Vázquez, E. et al. (2015) Effects of a human milk oligosaccharide, 20-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J. Nutr. Biochem. 26, 455–465
  • Wang B, Yao M, Lv L et al (2017) The human microbiota in health and disease. Engineering 3:71–82
  • Wang, T. et al. (2015) Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes 6, 707–717
  • Wilson, M. (2018). The Human Microbiota in Health and Disease: An Ecological and Community-based Approach. Garland Science.